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Abstract

The increasing complexity of p1ocess control ap-
placations have posed difficult problems in fault
detect ion, isolation, and recovery (1 ‘DIR). Decep
knowledge-based approaches, such as model-based
diagnosis, have offered some promisc in address-
ins these problems. 1 lowever, the difficulties of
adapting these techniques to situations involving
numerical reasoning and noise have limited the ap-
plicability of these techniques.

‘1 his paper describes  an extension of classical
Imctc.J-based diagnosis techniques[2]to deal with
sparsc data, noise, and complex non-invertible nu-
merical models. These diagnosis techniques arc. be-
i ng applied to the 1 ixternal Active Thermal Control
System (1 iATCS) for Space St ation Freedom. ,

1 Introduction

This paper describes an original approach to model-based
diagnosis driven by application constraints. Due to the com-
plexity of the Physical processes involved in HATCS, t he
modcl developed is a Jumped parameter mode of the steady -
state. behavior. The engincering effort required to build a
dynamic, lumped parameter model would have been compa-
rable to that of building a bigJl-fidelity mode.t.

Whercas a dynamic model would integrate differential
cquations to predict toc model response, a gcacty-state model
computes only the stable. model response for every change to
the model inputs. Consequently, the intermediate value.s for
the model variables cannot be trusted as representative of the
modc] transit.nt behavior.

To keep the diagnosis tool domai n independent, we use the
compionent/connection paradigm for modeling as desciibed
in section 2. FHach component is modeled in terms of design
parameters, variables and constraint equations definedfrom
variables and patameters. The model of the physical system is
derived fromthe interactions among constituent  components
modeled as component connections. The embedding of the
physical system in an environment is modeled as interactions
with external inputs and observable variables or sensors. Sce-
t ion 3illustr ates this modeling framework with a simplified
evaporator 100} taken from the 1:ATCS.

Givenamode 1 of aphysical system, there arc. several classes
of diagnoses base.cl cm the level of (diagnostic conclusions
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desited and which sensors and externa inputs arc believed
in. Section 4 discusses the possible diagnostic conclusions in
terms of the data belicved in and the diagnostic hypotheses
made.

Section 5 discusses the underlying diagnosis machinery:
the adaptation of constrai nt suspension to coat inuous, steady -
statc models similar to [3] for analog models. For digital
domains formalized in logic, constraintsuspensioniscom-
plete in thata | of the consistent states can be found for any
suspended constraint.  Incontinuous domains, the adapta-
t ion of constrai nt suspension presented her ¢ requires severe
restrictions for it to be complete.

Scction 6 describes the overall diagnostic process from
anomaly detect ion to hypothesis formation and validat ion.
Finally sec. 7 describes the implementation status and sec 8
concludes this paper.

2 Modeling

The model of each system component is defined by a set of
constraints. Hach coast raint e cortesponds to one or nmrc
analytical equations. The domain of a constraint, 1)(e), is
the set of component parameters and variables used in tbc
equations of the. constraint c.

Given a component c, the set of al parameters I’(¢) of
that con iponent 1epr esents the physical characterist its’ of c.
The sct of values of a 1 component variables, V(C), represents
the component state of ¢ a a given instant. Yor example,
the diameter of a ventur i component is a design parameter
whereas the flow rate through the ventut i is a stat ¢ variable.
A vatiable of a comnonentis sensed when there isa physical
sensor providing external obset vat ions of that variable. 1 ‘or a
systemmodel M, C(M ) 1epresents the set of comp onents of
that model, F2(M )representsthe setof constraints of C(M),
and S(ML] is the set of sensed component variables, thus
S(M)CUec gary V(C). 1(M)represents the set of external
inputs to the model.

The constraint model of a system M is a graph, M =
(V, €),whose vertices are

[
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and edges arc defined by:
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Thatis, V isthesetof al constraints, externalinputs anti the
vatiables and parameters of each component of the model. £
is[lI( setof edges constructed from the dependencics between
the equations corresponding to cach constraint and the graph
vettices appearing in those equations.

For a constraint eand D(e):={=,....=,}, the constraint
is deactibed as an equation:

(C) f(:ml,ﬂ'ly,...,m"): 0

where f isthe function characterizing e. AN model constraint
cisinvertibleif there exists n projection functions, fz,for
cach #i (1 < 4 < n)such that the model constraint ¢ i s
equivalent to:!
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The invertability of amodel constraint affects which tech-
niques can be used to resolve. a setof K constraints withn
unknown variables or paramecters. When model constraints
arc invertible and theit derivatives are aso inver lible, then a
solution can easily befound. When amodel constraint has
irreversible projection functions, it is no longer possible to
invert a component constraint, instead the constraint has to
be relaxed by searching for a set of possible values for the
unknown variables or parameters.

‘1'bus, one. of the requirements for constraint suspension for
diagnosis is that model equations be either invertible or suit-
able for relaxat ion methods: cent i nuit y, differentiability of
the model function aswell as that of al the partial derivatives
of its projection functions. This lad requirenlc.nt is there to
guarantee that the modet functions are wc]] behaved., Mono-
tonicity is not necessary for relaxation as long as every local
minima and maxima of each projection function fz, can be
analytically determined or numeric.ally computed (e.g., by
resolving dfy, /de = 0.)

Another source of modeting complexity stems from feed -
back. In simulation, fecdback implies the need for relaxation
methods to find a stable. solution to a feedback loop. In diag-
nosis, feedback can affect the constraint suspension process
when1) k-consistency methods arc used and 2) k is large
cnough to include al 1 of the coast raints of a feedback loop. la
this case, feedbackimpacts constraint relaxation. Sccondly,
feedback affects the diagnostic interpretation process where
theresults of constraint suspension arc analyzed to conclude
on theoriginof the anomalies.

3XATCS evaporator model

Figure Ishows a schematic diagram of a simplified evapo-
rator model. ‘1 his model omits pipes and vaves. However,

"I'he notation: (m,..., Fiy ... z..) represents the n - 1 wuple
derived fromthe ntuple (zy, . ... 24, .5, z.,) by removing z;. That
is:

(Tl.-..,;.',...z"):
(72,.- - 7n) ifi= |
(ml,...,m;.l,m;“,...mn) ifl<i<n
{ (F1e @0 ifi= n

[%][4] The evap-toop schomatic
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Figure 1:1 {ATCS evaporator module

it retains important characteristics that make it a challenging
diagnosis task. The model constraints corresponding to the
hydraulic behavior of the evaporator ai e shown in Fig. 2. For
brevity, the thermalinteractions of this model have been omit-
ted in this paper. None.thclcss, the model presented includes
a passive. feedback loop combined with non-invertible model
constraints.

Referring to Figurel, the function of the Rotary Fluid
Management Device (RTMIDD) isto supply sat urated ammonia
to the evaporator loop a a pressure that is dependent cm the
set point pressur ¢ of the HATCS, the-speed of the. RTMID,
and the overall flow to the evaporator loop. The cvaporator
loop contains parallel branches, each containing, a cavitating
venturi anti an evaporator. The cavitating venturis regulate
the flow of ammonia to cach evaporator as a function of the
inlet pressure and ammonia saturation pressure, as long as
cavitating behaviot is achieved. The design flow rate of each
Cavitating venturiisfixed by tile. design pressures and by the
diamcter of the venturi throat This flow rate. is determined
such that the. evaporator can absorb its designheat load and
still naintain a two-phase mixture at the evaporator outlet.
Because this syarantees saturation conditions at the outlet,
the temper at vie will be approximatel y the same around the
loop.

The passive feedback loorn occurs between thie RE M and
the vent uri/evapor at or branches.
restricting behavior of the cavitating venturi, a change in evap-
orator loop inlet pressure canlead to changes in all cavitating
venturi flows which then cause a global change in the evapo-
rator loop flow, resulting in a further (but offsetting) change
in the inlet loop pressure. Since there is no direct method
to compute the new equilibrium point, several iterations are
necessary to converge to a solution.

The presence of feedback signals the. need for relaxation
to resolve the set cf model constraints since there arc no
guarantees of a closed form solution avai lable for an arbitrary
feedback model. During simulation for example., the nesting
of feedback loops can have dirc computational consequences:
the simultancous relaxation of multiple, interacting feedback
loops can lead to oscillations.? Inthe BATCS evaporatot, such
oscillations can occur when a now flow/pressure pointis tried

*T'his was a problem of aacarlicitule-based EATCS model which

Due to the passive flow-



as a solution to the flow splitamong the evaporator branches
while the REMD produces the inverse pressure/flow point.

T'he thermal constraints have beenleft out of this model.
They describe the heat-traasfer from the heat sources (c.g.,
crew cabin) tothe ammonia. Somnc of the constraints in Fig, 2.
arc non-invertible and are shown with arrows.

Vor example AI’rfid as a function of Speed, Tpitot, and
Flow is;

. 9 . Flow
APrfmd = pSpeed® x index | -

p Speed ¢?

where p is (e density of ammonia at temperature Tpitot and
index is a non-invettible function.

4  Anomalics

Component failures. Component failures arc modcled as
changes in the physical characteristics of a component (i.e.,
the model par ametersof a component.) The measurable im-
pactof acomponent failure is in the. inability of that compo-
nent to meet desired operating  conditions. The actual oper-
ating conditions arc determined or detived from the sensors
and the external inputs.

A component failure corresponds to a change in that com-
ponent physical characteristics as defined by the component
model parameters. Given t bat interpretat ion, the diagnosis
of a component{ailureis a two stage process:1) parameter
relaxation to find values for the component model paramcters
such that the model predictions match the sensor obser va -
tions (i c.., 1esolves the sensor discrepancies), and 2) interpret
the1 ctaxed component parametersin contrastto the homi nal
parameter values.

A componentfailute isasufficient credit ion for the, occut -
rence of an anomaly. Systc.in operat ion beyond the design
envclope is another cause that dots not necessarily requir ¢
a componcnit failure.  Whercas model equations define the
behavior of the system, the model parameters determine the
designenvelope of the. possible, states for the system. ‘1 he
actual external inputs determine the system operating state.
within the design envelope defined by the. actual model pa-
rameters. Since the mode.l parameters constraint admissible
When the externalinputs are. not admissible given paranictet
values, the system

Operation beyond design envelope.  The design envelope
of a system is detet mined by the model equations and the
actu a paramelter values affecting that system. The type of
behavior is determined by the mmodel equations whereas tile
actual beh avior path is determined from the actual situation,
i c., the values of the external inputs.}ior anew set of €x -
ternalinputs, the system may not be able. to satisfy all of the
constraints. in such cases, tile. system is opet ating beyond
capacity.

5 Diagnosis algorithm

The constraint graph of a physical systemmodel is defined by
taking the set of model constraints, variables, paramecters, and
exter nal inputs as graph vertices and the dependencies of cach

motivaled the development of the pre.sent component-co nnection
mode.

constraints in terms of variables, parameters, and externalin-
pots as graph edges. By merging two constraints wheneves
they share a common, unsensed variable and by eliminating,
the shared unsensed variables, the constraint model of the
system can be reformulated in terms of merged constraints,
sensed variables, model parameters, anti externalinputs. Hach
constraint in that model willbe onc of three kinds: a sensor
constraint when all of variables of that constraint willbe
sensed, an external constraint when at least onc of the vari-
ables is an externalinput, a parameter consiraint when the
vatiables are either sensed or model parameters.

Figure ? shows a simplified model constraint graph for the
cvaporator loop system of fig. 1.1 dgure 3 shows the rc.suit
of merging model congtraints of 1 ‘ig.2 to obtain sensor and
parameter constraints. Constrai nts C2” and C2” have been
merged into (2 so as to eliminate the unobserved APrfnd.
Similarly, [M’, C4° were mergedto yield C4; anti C6’, C6”
were. merged to yield CG6. 10 1 ‘ig.3,CS anti C7are sensor
constraints; C1, C2, anti C3 arc external constraints; and C4
and C6 arc. parameter constraints.

‘1’ here arc two types of diagnostic problems that can be con-
sidered depending on which observable values are believed
in. 1 ‘ach diagnostic problem can use any of the k-consistency
methods for constraint satisfaction as appropriate. When
sensed variables and external inputs arc believed, constraint
suspension consists in finding a set of model parameter vaues
S0 as to satisfy all constraints. ‘this can fail either because of
com ponentfailures or because of operation outside designen -
velope. 1 n some cases, distinguishing bet weenthe t wo might
be difficult such as when constraint Clor C3are violated for
onc can a-priori tell whether it due to the inability to fit a
model parameter or change an externalinput. This case is
cquivalent to the. second diagnostic problem where external
inputsare not believedi inwhile sensed variables arc.

The gencral constraint suspension diagnostic framework
resembles adata reconciliation process that can be formulated
as follows:

Given:

e aset of independent model parameters,

¢ asct of external inputs,

e a sat of model variables where each variable
dependents on a combinat ion of other model
variables, parameters, and inputs (model con-
straints),

e asubset of the. model variables each associated
to a sensor (sensor allocation)

Find
« aset of values for allmodel parameters (initial
stat c)

« aset of values for al externalinputs (operating
conditions)

sucl that the set of values for al model vatiables
(stc.a(iy-stale predictions) derived fromthe initial
statc best matches the sensor data  (observations).

Diagnosis reasons about the discrepancies between the as-
sumed initial state and oper at ing, conditions and the ones lead-
ing to the best sensor observation math to model predictions.
Qualitatively small di fferences arc. attributed to process and
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Figure 2: Abstract parameter/sensor constraints for the evaporator module
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Figure 3: Hydraulic constiaints for the evapor ator module




sensot noisc o1to model appt oxidations. The differences ar¢
atributed to anomalies or faults when the differences exceed
the bounds defined for the current nominal state.

Since model constraints are not necessarily invertible, the
model cannel beinverted to detive an input state compati-
ble with sensor obscrvations. Instead, the compatible initial
state needs to be searched. ‘The algorith presented here is in-
spired from constraint suspension. Constraint suspension was
developed for digital models where it is possible to remove a
constraint and compute model predictions. With analog mod-
cls, the lack of invertability in generai prevents the straight
application of constraint suspension for the removal of a con-
straint may prevent the ability of the simulator to compute
predictions.

£.1 Constraint model

A constraint corresponds to one or more analytical equations
describing the physical system being modeled. The set of all
constraints, C, thus defines asystemof analytical equations
characterizing that mode.]. A model constraint graph, M -

(CV P1,h), isconstructed as follows:

The vertices of M arc CVIPI:=C YV P JZ where V
and 7 are respectively the set of all variables and that of all
unobservable patameters occurring in the model equations of
M. 7 isthesel of all external inputsto M. Yor notation,
BP(e):= v(c) UP(e)= {Vv]... ., w}UH{p1,...,pu}de
notes the set of model variable.s, V (¢): {vI, . ... v,}, and
unobservable model parameters, I’(¢) = {pi, . . ., P } in-
volvedin the constraint ¢.The distinction between a mode]
patatneter anti model variable is domain- specific knowledge
about the models of the components used in the physical sys-
tem.1etI(c)= {i], ..., 1} be the set of model inputs
affecting c.

The edges of M are defermined fr om the model constraints
C,V, 7, anti 7.. Hachedge e € I is determined as follows:

.e:{®i,¢} is an undirccted edge between a model vari-
able, parameter or externalinput 2 and a constraint c if
1)2¢C VI'(c) orzC7 anti 2) there exists a function f
such that ¢ isinvertible with respectto 4, i.e.,:

FCITRRRE NI, P

and ¢ isinvertible with respect to some other variable 25,

3% % that is if there exists at anothet function fj such
[bat:

fj(:l‘.l,...,:l’:\j,...,:r.“): Ty

o £:% -1 ¢ is a directed input edge from Zi to ¢ if 1)
i (VP(c) U7, 2) ¢ isnotinver tible with respeet to
zi,and 3) c isinvertible with respect to anothici model
variable 2;; ¢ VP () U7 ,5 7 <.

« €1 C - ®iis adirccted output edge from C to @i if 1)
¢V P(c)|J7 and2) Cis invertible only with respect
to #4; that is for any =; CVI’(c) U7, 77 4, c is not
invertible with respect to y;.

A consti aint ¢ will be called undirected when all edges
between ¢ anti csne of the variablesz ¢ V P(¢) [ 7 arc undi-
tected. When one. of such edges is directed input or output,
the constraint will be called directed.

Todesctibe sensor [alocation, we will use a predicate, S,
such that for any mnodel y,, iable v ¢ W S(v) is truc iff there
is a physical sensor measuring v.*

5.2 Sensor constraint graph

The sensor constraint graph, M, = (CV 1, Kg), is con-
structed from the model constraint graph, M : (CV 1, k),
by abstract ing the model variables of M that are not sensed;
thus Vy = {v|v € V such that S(v) is true}.

Note thatwhen a constraint, ¢, has adirected output edge,
c -» ¥, the corresponding abstract constraint, ¢, will have
ditected input edges for the other variables of c. That is, if
a:;C (VI'(C) JZ) Vs - {v:}, is mapped in the abstract
constraint graph, the.n the edge between ;5 and C will be
mapped into a directedinputedge to ¢‘. This stems fromthe
fact that v may notbe in V,and tilelcfor'c the fact that ¢ is
invettible only withrespect to v; trandates into the fact that ¢
isnot invertible withrespect to the abstract variables of V (c).

Wec will denote C,: {c € Csuchthatl’(¢): 0} and
¢, : {c ¢C such that P’(¢) ¥ 6}. Obviously,C , C, | C;.
Constraints in Care potent i at 1y harder to solve. when a given
constraint has more than onc parameter (e.g., C1,C3). On
the other hand, the. constraints in C,are cheap to check since
they only involve observed sensor variables.

5.3 Constraint suspension

I'here arc several approaches to constiaint sa isfaction, from
local, k-con sistency, and to global consistency methods. Due
to the non-invertability of some constraints, global consis-
tency may require costly constraint relaxation methods. Con-
straint suspension is a technique to determine which con-
straint, when “taken out” of the model (i.e, suspended) makes
obser vations consistent.

I‘orthe diagnosis of slc.a(iy-state analog models, obser va-
tions are consistent when there exists a set of paraineter values
suchthatthe discrepancics bet ween the model predictions and
the scnsor observations arc minimal. The minimum levelof
discrepancy below which predictions arc said to match the
obsetvations is usually defined empirically for lack of better
domain knowledge. This minimum discrepancy level de-
pends on such factors as process noise, Sensor noise., anti
model accuracy.

In this context, global consistency coriesponds to infer-
1i ng values for all unobservable model parameters so as to
matchmodel variable predictions to sensor observations with
minimal discrepancies. Inthe example of ﬁ8-3,thcrc arc
7 coast faints with an average of 4variables or parameters
per constraint, Evaluating1-k consistency implics 7 local
constraint sa isfact ion problems, 2-k consistency implies 2.1
problems and 3-k consistency 35. 4out of the ‘/ constrains
i nvolve non-invertible constraints which require relaxation.

For diagnosis, full congtraint satisfaction is not aways nec-
essary since some faults can have a loca impact. 1 %or example,
al caky divide tec would violate the mass balance constt aint
desctibed by constraint C7, namely that Flow =1'v1- Fv2,
On the other hand, other faults can have globalimpacts on
the entire model. I ‘or example, an increased heatload on the
cvaporator t 1anslates into a different hydro/the: mal regime
which causess discrepancics on alinost al sensors.

*Phis sensor alocation modeling is orthogonalto whether the
Sensors themselves arc. modeled asdevices O not,



Yorthis diagnosis application, there are a few domain-
independent heutistics which drastically improve the ¢ ffi -
cicney of constraint satisfaction, The first constraints to be
checkedare sensor constraints then, parameter constiaints.

Cheek sensor constraints As mentioned, each constraint ¢
in C, can be checked at any t ime that sensorobservat ions ate
avail able. Whensuch aconstraint fails, the conlpesnc.et(s) cor-
responding, to the constraint cquation(s) are presumed faulty
or abnormal. The remaining constraints of the model can be
checked aslong as they do not cortespond to the components
of c.

Cheek parameter constraints  1.et ¢ be a parameter con-
straintand V(c) = {vi,..., v}, I’(c) = {p1,..., P}, and
1(c) . . .
Vet My (Pry oo Py Y1y e o o Diy ooy Uny B1, 000y 80) = 94 be the
projection function of e for v;.

For each v;, recompute m functions fp*, ..., fpli as:

m

Uyeoaylog.

Jrl‘j(llll"' vi,...,'vn,z,,...,i)

dly, , .
) (Ply ey Py Uty o Vige ey Uny By oo 0y 3)

pj
Check externalinput constraints This is similar to the
checking of parameicr constiaints except thatexternal inputs
arc trcated similarly to sensed variables since both are direct
obscrvations.

y Py U1y -

5.4 k-cor isistency methods

In constraint satisfaction, there is a tradeofl between the size
of the constraint set being resolved and the number of such
constrai ats setsto 1 esolve.  }lere, we de.scribe. a domain-
indepiendent criteria for parameter constraints to deter imine
the size of the constraint sets that can be resolved with k-
consistency methods.

| ‘or parameter constr aints, n-consistency methods can be
used 10 cli minate model parameters. When t wo or more con-
straints share a paramelter, p, and onc of these constraints,
¢, is invertible with respect to p, then the constraints can be
reformulated by substituting p. Thisimpacts the constraint
resolution process where the number of unknown parameters
involved has been reduced and tberc.fore constraintresolut ion
is computationally more cfficient.

Formally, let C: {cl, ¢, .., ¢, } be a set of constraints
to resolve for n-consistency. let PP = U | P(e) =
{71, .. .. )= P be the set of parameters of the con-
straintset. For any improvement inthe constraint resolu-
tion process to occur, there must be k, 1 <k < m pos-
sible parameter inversions and substitutions. The #-th in-
version/substitut ion with respect to 7% on constr aint ¢ 1 ¢-
quires that ¢; must be invertible with respect to Pis i e..,
pis Si(Pig oo oo v, vy.), where {v}, . . ., vy} -
V (e:). Then, 5 is substituted in al the remaining  constraints
Ci41y -+ +y Cn thusremoving i from the sct Of parameters of
the remaining constraints. After the 4-th inversion anti sub-
stitution is done., the remainina constraints will cach have d
most -4 parameters (i.e, Ui Hl]’(c;)_C{PHn N T S

1¢r sensor constraints, the use. of n-consistency mcthods
does not add any leverage since each constt aint can always
be checked against sensor observations. Since sensor con-
straints are defined from non-ovetlapping constraint sets, any

two sensor constraints can only have common sensed vati-
ables. 1 ‘or the purpose.s of constraint satisfaction, sets of sen-
sotconstraints are no more informative than theit constituent
constraints.

6 Diagnostic process

Since diagnosis is a computationally expensive process, it
is impot lant that it is initiated only when anomalics occur.?
We rely on monitoring techniques ckwce.loped in the Selmon
projectat JPI, to provide several monitoring criteria to detect
anomalics.

6.1 Hypothesis formation

Hypothesis formation starts with the assumption that discrep-
ancics between sensor telemetry and and model predictions
are minor. “1'here are several causes to disctepancies such as
noise and drift in the physical process, sensors, or the envi-
ronment, and limited modeling accuracy. Making distinctions
among these can be arbitrar ily difficult since the differences
can be arbitrarily minuteas well. A commontechnique is
to qua at ize modeling accuracy and lump the effect of noise
cither on a global scale. or per sensor basis. 1 N engineer-
ing, tolerance thresholds arc commonly used even as a design
specification for the lumped effects of process and enviton-
ment noise or drifl. (c.g., an electrical resistor is specified
within atolerance level, 1%, 2%, 5%.)

When the discrepancies exceed the threshold, constraint
suspension is initiated to determine a set of model parameters
thatare consistent with the observations. The actual diagnos-
tic reasoning is based on the following sources of i nformat ion:

1. violated sensor constraints.
A sensor constraint c is violated when the sensor obser-
vat ions used as vaues for the constraint variables V(C)
cannot satis{y the constraint equations, even within noise
tolerance margins. This entails several diagnhostichy -
potheses (in order of verification complexity)

+ the component associated with the constraint is

fault y. This corresponds to interpreting the i nabil-
ity to satisfy the constraint equations as a compo-
nent failure where the failed component behavior
no longer cort esponds to the unfaulted component
cquations.
Inthis case, fault models of the component can
be usc instead of the nominal model in an attempt
to reach concordence between model predictions
and sensor obser vat ions. Without fault models, the
component can only piesumed to be anomalous.

+ the component associated with the constrai nt
changed of operating mode. This hypothesis is
available only whenthe inter oal mode of a com-
ponent is an unobser vable parameter. 1 n this case,
this hypothesis can be reinforced when par ameter
constraints associated with this component arc vio-
lated as well.

“Yor steady-state models, predictive diagnosis-  i.e., the ability
of predicting ahcad of time anomalies be.fore. they occur - requires
ananalysis of the historical data up to the current late. since asteady
state model cannot by definition predict transitions away from a
steady state.,



« the component  associated with the constraint
changed of operating mode due to the occut 1ence
of ananomaly somewhere else. Although the eflcct
forthe component is identical to the previous case,
the difference stems in the origin of the anomaly:
in the previous case, itis the component itself, in
this case, it is in some other component.

2. adjusted parameler constrai nts.
A sensor constraint ¢ is adjusted when the sensor obser-
vat ions used asva ues for the constraint variables V()
satisfy the constraintequations whenused in conjunction
with a set of constraint parameters differ ent than those
forthe nominal date.

3. violated parameter constraints.

A scnsor constt aint ¢ is adjusted when the sensor abser-
vations used as values for the constraint variables V(c)
cannot satisfy the constraint equations for any combina-
lions of model parameters.

4. violated external input constiai nls.
An externa input congtraint ¢ is adjusted when the sensor
observations used as vaues for the constraint variables
V(c) cannot sat isfy the constraint equat ions for any com-
binations of external inputs.

The last threc cases are the most computationally expensive
ones. Parameter adjustments are determined with a variety of
techniques depending on whethet the constraints arc inver tible
with respect to the parameters.  Inthe simplest case.,” the
constraints are inverted with respect to each parameter. When
there is only onc parameter in a constraint, then the sensor
obscrvations arc. used to determine a corresponding parameter
value. When there are two or more parameters in a constraint,
ascarch for a consistent solution lake.s place. ‘J his scarch can
be made efficient by using a divide-anti-conqoer approach anti
propagating intervals through potentially differentiable non-
monotonic functions. This interval propagation is donc by
checking the derivative of the constraint function and tracking,
where minima and maxima can occur within that interval.

6.2 Hypothesis validation

The method to check the constraint is 1) verify thatadding
hoist ta the model paraineters or the external inputs is not
sufficient to 1esolve the discrepancies, ?) relax c to find an ap-
propriate set of model parameters, and 3) interpret the niodel
par arncters consistent with the observat ions relativel y to the
modcl parameters for the presumed nominal state.

7 Jmplementation status

The diagnosis algorithm presented here is the suceessor to an
earlicr pr otot ypc of the constraint suspension algorithim for
analog models. The diag noser is part of an Modeling Fn-
vironment for Systems AnalysiS (Misa) being developed at
JPLLi 1. The MESA architecture comptises t wo computational
processes communicating asynchronously: Graphical model-
building tools are provided by G2, acommercially available
rea-t ime expert systemshell. The G2 process also comprises
atranslator that parses the contents of the G2 data structures
into files representing amodel causal and constraint relations.
These files arc. used by a model. based Event-Driven Simu -
lation Environment, EDsE, built on top of a separate ].isp

process communicating with G2 through TCP/IP. Some com-
ponents of the diagnoser are being implementated in 1 .isp,
other por lions arc being implemented in G2.,

8 Conclusions

‘This paper presented our catly results on the diagnosis of ana-
log physical systems. The main contribution is in an adapta-
tion of constraintsuspension to Cent i nuous, steady state mod-
els of physical systems. Wc assume thatmodels of physical
systems arc organized according to the component/connection
paradigm where the model of each componentisdescribed in
terms of constraints among component variables anti design
parameters.

There four types of clementsused to define constraints:
model parameters, mode! variables (sensed and unobserv-
able), and externalinputs. Yiach constraint is defined from
nmiodel equations with a domain characterized as a set of pa-
rameters, variables, and externalinputs. Given a set of of
valucs for a subset of a constraint domain, constraint relax-
ation corresponds to the task of finding values for al the
remaining unknown variables.  Cur rently, we believe that
congtraint relaxation can be guaranteed aslong as eachmodcl
equation can be reformulated as a functional equation of the
form f(zy,. ... 2, ):0 wilerc #1,. ... =, is acombination
of variables, parameters, and externalinputs such that:

« f is continuous, differentiable and each partial derivative
df /dz; is also continuous (1 <i<mn),

« the noise level for any model variable has a fixed upper
bound much lover than the possible r ange of values for
that variable (e.g., 5% of the. range)

The requirements on continuity and differentiability guar-
antee the feasibility of constraint relaxation methods even
though the model equations may involve non-] incarities. The
noise level containment allows us to quantify aminimum dis-
crepancy threshold used to relax strict equality or inequalities
used in congtraints to decadbands.

Tuture work will focus on analyzing the performance of
the proposed constraint suspension approach to diagnosis and
characterizing the impact of fecdback on diagnosis.
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